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a b s t r a c t

A new application of emphatic orthogonal signal correction (EOSC) for baseline correction of near infrared
spectra from reflectance measurements of tissue sections is introduced. EOSC was evaluated and com-
pared with principal component orthogonal signal correction (PC-OSC) by using support vector machine
(SVM) classifiers. In addition, some exemplary synthetic data sets were created to characterize EOSC cou-
pled to SVM for classification. Orthogonal experimental design coupled with analysis of variance (ANOVA)
was used to determine the significant parameters for optimization, which were the OSC method and num-
ber of components for the model. EOSC combined with the SVM gave better predictions with respect to
OSC
VM
ancer detection
hemometrics

a larger number of components and was not as susceptible to overfitting the data as the classifier built
with PC-OSC data. These results were supported by simulations using synthetic data sets. EOSC is a softer
signal correction approach that retains more signal variance which was exploited by the SVM. Classifi-
cation rates of 93 ± 1% were obtained without orthogonal signal correction with the SVM. PC-OSC and
EOSC data gave similar peak prediction accuracies of 94 ± 1%. The key advantages demonstrated by EOSC
were its resistance to overfitting, fine-tuning capability or softness, and the retention of spectral features

after signal correction.

. Introduction

Endometrial cancer is the most common malignancy of the
emale genital system [1]. Endometrial cancer causes men-
trual disorder, ovarian tumors, and polycystic ovary syndrome.
lthough the etiological factors causing endometrial carcinoma are
nknown, the reported risk factors include menstrual [2], fecund
3], hormonal [4], metabolic [5], dietary [6], etc.

The main diagnostic methods for endometrial cancer include
ytological examination, B-ultra examination, diagnostic curet-
age, hysteroscopy diagnosis, retroperitoneal lymph node imaging,
nd nuclear magnetic resonance (NMR) imaging. Among them the
ysteroscopy diagnosis can only be used for the cases for which
iagnosis cannot be confirmed. For those cases additional endome-

rial biopsy is needed and NMR is used for non-damage diagnosis.
owever, even with these additional diagnostic methods, the accu-

acy is still insufficient while the cost is increased. Recently the
evelopment of non-destructive examination methods such as

∗ Corresponding author.
E-mail address: gusto2008@vip.sina.com (Z. Zhang).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.11.020
© 2010 Elsevier B.V. All rights reserved.

magnetic resonance imaging (MRI) combined with chemometrics
for disease diagnosis has garnered attention [7–9].

There have been several examples of the application of non-
destructive examination by diagnostic models. For breast cancer
diagnosis, images of cells obtained from fine needle aspiration were
classified using support vector machines (SVMs), radial basis func-
tion (RBF) networks, and self-organizing maps (SOMs) [10]. An
approach based on the implementation of multiclass SVMs with
error correcting output codes (ECOCs) was reported for diagno-
sis of erythemato-squamous disease from patient symptoms [11].
Huang et al. [12] constructed a hybrid SVM-based strategy with fea-
ture selection to render a diagnosis between the breast cancer and
fibroadenoma and to find the important risk factor for breast cancer.
Probabilistic neural network (PNN) and SVM neural network mod-
els have also been investigated for classifying normal and abnormal
hysteroscopy images of the endometrium based on texture analysis
for the early detection of gynecological cancer [13].
Near infrared spectroscopy (NIRS) is a spectroscopic method
which uses the near infrared region of the electromagnetic spec-
trum (13,000–4000 cm−1). Typical applications of NIRS include
pharmaceutics [14], medical diagnostics [15], food [16], and
agrochemical quality control [17]. NIR spectra are useful for char-
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cterization and identification of complex matrices [18]. Cancer
ells and tissues differ in chemical composition from normal tis-
ues, and this difference is the basis of cancer diagnosis by NIRS.
IRS may also detect differences in cell morphology between nor-
al and cancerous cells. The morphology may affect the scattering

f the NIR radiation that manifests in baseline variations that cor-
elate with the tissue class. An effective classification procedure
or diagnosis of prostate cancer from NIRS measurements has been
eported [19].

NIRS reflectance measurements of complex samples such as tis-
ue sections are beset with varying backgrounds and baselines that
an deter chemometric methods from working effectively [20].
rthogonal signal correction (OSC) methods provide a means of

emoving complex background variations while retaining the sig-
al. The various methods all work in principle by creating basis sets
hat are orthogonal to the signal which is defined in this case by
he different classes of tissue. The methods differ in the approach
hat they use to define the basis sets. NIR spectra are frequently
lagued with unwanted variances such as baseline variances espe-
ially for large-scale studies and for complex samples. Various OSC
ethods have been developed in recent years after it was first intro-

uced by Wold [21,22]. The objective of this work is to evaluate an
rcane background correction method for cancer diagnosis by SVM
lassification of NIR measurements of tissue samples. An emphatic
rthogonal signal correction (EOSC) method developed by Wu is
escribed [23,24]. This method has not yet been used in the field
f chemistry and a new application of EOSC is presented in this
aper. The principal component orthogonal signal correction (PC-
SC) method [20,22] which is the least constrained and simplest
f OSC correction methods was used as a reference method for
omparison to the EOSC method. Two standard kernels were used
o evaluate the SVM for the effectiveness of the signal correction

ethods, the RBF kernel and a simple linear kernel. To explain the
easibility and effectiveness of EOSC, a comparison of EOSC and PC-
SC using synthetic data and real NIR spectra of endometrial cancer

amples is presented.

. Theory

.1. Complementary orthogonal subspaces
Any N-dimensional space can be partitioned into mutually
rthogonal subspaces. In Fig. 1, a 3D space is defined by plane A
x + y + z = 0) and straight line l (x = y = z). In this space, a basis for
lane A (dimensions of 2) is 〈a, b〉 and a basis for the straight line l

ig. 1. Two complementary orthogonal subspaces in 3D space. The plane is subsapce
1 and the line l is subspace N2.
Fig. 2. Construction of the binary encoded Y-matrix.

(dimension of 1) is c. An N-dimensional space can be separated into
two mutually complementary orthogonal subspaces of dimensions
N1 and N2 as defined by:

N = N1 + N2 (1)

for which N is the dimension of the full space; N1 and N2 are dimen-
sions of the two complementary orthogonal subspaces.

2.2. PC-OSC and EOSC methods

The data matrix X comprises m rows of spectra. A binary matrix
Y encodes the classes by having a single value of unity in each row
and the columns designate the class membership. The other terms
in the Y matrix are zero. X is an m × p matrix for which p are the
number of spectral variables or measurements. Y is an m × k matrix
for k is the number of classes. The binary encoded Y-matrix is given
in Fig. 2.

Principal component orthogonal signal correction methods
work by defining a subspace that is orthogonal to the property
matrix Y. The orthogonal subspace X0 to the property matrix Y is
obtained by:

X0 = (I − Y (YT Y )
−1

YT )X (2)

Typically control of the subspace dimensionality determines
the amount of background correction of the data set X. Too few

components will underfit the data and leave some background
components in the spectra and too many components will over-
fit the data and remove signal from the spectra. The PC-OSC [20,22]
procedure is given in Table 1.

Table 1
Procedure for PC-OSC.

Inverseleast squares model for
X and Y

X = YB + E

B = (Y T Y )
−1

Y T X + E

1. Correct X and Y by
subtracting their means

X1 = X − X̄
Y1 = Y − Ȳ

2. Calculate the background
from the least squares model

X0 = X1 − X̂1 = X1 − Y 1(Y1
T Y1)

−1
Y T

1X1

3. Calculate a basis from the
background using the
row-space eigenvectors from
SVD

X0 = USVT

4. Define the basis by selecting
n components

Vn = [V1, V2, . . ., Vn]

5. Calculate corrected spectrum
xpc from new spectrum xp

xpc = (xp − X̄) − [(xp − X̄)Vn]V T
n
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The EOSC method is based on the following relationships:

= (Y − Ȳ )
T
(X − X̄) (3)

= null (M) (4)

= (X − X̄)B (5)

or which B is a p × (p − k) null basis formed from the p − k eigen-
ectors of the smallest eigenvalues (secondary components) of the
ovariance matrix M. The subspace defined by Q is a complemen-
ary orthogonal subspace of the subspace defined by M and as a
esult Y. The null space spans the full residual rank and multiplica-
ion by X is required to remove additional dimensions that may not
e found in X. Thus, Q is the intersection of the null space B and the
ean corrected spectral data space (X − X̄). However, background

ariations in the prediction set may not be the same as those found
n X and may reside in the null space B.

Singular value decomposition is used to decompose Q as given
elow:

= USVT (6)

or which Q is decomposed into row U and column V eigenvec-
ors and a diagonal matrix of the singular values S. These matrices
re used to invert Q and the number of components used to define
he pseudoinverse controls the fit of the correction. The goal is to
alculate a transformation matrix by using singular value decom-
osition to divide Q by itself and the ratio is subtracted from the

dentity matrix Ip to yield the correction matrix D.

= Ip − BVS−1UT (X − X̄) (7)

ˆ = (X − X̄)D (8)

or which X̂ is the orthogonal signal corrected data, and D is the
onversion matrix. For the prediction set:

ˆ prediction = (Xprediction − X̄training)Dtraining (9)

or which X̂prediction is the orthogonal signal corrected prediction
ata matrix Xprediction. The EOSC procedure is given in Table 2.

. Experimental

.1. Instrumentation

A Nicolet 6700 extended Fourier transform near infrared (FT-
IR) spectrometer (Thermo Electron, USA) equipped with InGaAs
etector was used for the NIR measurement. The spectrometer was
ontrolled by OMNIC service software of version 7.3. The measure-

ent was performed on the top of the glass plate, and each section
as measured at 5 different locations and the average spectra of

issue sections were used as the spectra of cases in the follow-
ng analysis. Data analysis was done using MATLAB software (The

athWorks Inc., South Natick, MA, USA).

able 2
rocedure for EOSC.

1. Correct X and Y by subtracting their means.
X1 = X − X̄
Y1 = Y − Ȳ

2. Calculate the covariance between X1 and Y1 M = Y T
1X1

3. Calculate the null space of the covariance M B = null (M)
4. Calculate the intersection Q of the null space and X1 Q = X1B
5. Use SVD to decompose Q Q = USVT

6. Use n components to calculate the pseudoinverse of Q +
n Q +

n = VnS−1
n UT

n

7. Construct the transformation matrix D by dividing Q by
its pseudoinverse Q+ and subtracting from the identity
matrix I

D = I − BQ+X1

8. Calculate corrected spectrum xpc from new spectrum xp xpc = (xp − X̄)D
Fig. 3. Sample arrangement for NIR measurement.

3.2. Samples

Endometrial tissues sections (18 normal, 30 hyperplasic, and 29
cancerous) were obtained from Beijing Red Cross ChaoYang Hos-
pital. Seventy-seven paraffin sections of endometrial tissues were
supplied by Beijing Obstetrics and Gynecology Hospital, attached to
the Capital Medical University. The mean age was 46 with the old-
est and youngest patients having respective ages of 71 and 19 years.
All the endometrial tissues were put in a 4% formaldehyde solution
to be stabilized, and then were washed with a series of increasing
concentrations of ethanol solutions (30%, 50%, 70%, 85%, and 95%,
respectively) for dehydration. The samples were put into xylene
for 2 h, embedded in paraffin wax, and then sliced into 4 �m thick
sections. The sections were put on glass slides and dried at 45 ◦C,
and then fixed with a neural gum mounting. Upon completion of
all the above procedures, the samples were ready for measurement
by NIRS. The sample arrangement for NIR measurement is given in
Fig. 3.

The paraffin sections were placed in the integrating sphere of the
NIR spectrometer. The NIR diffuse reflection spectra were collected
with a nominal optical resolution of 4 cm−1 across the spectral
range of 4000 and 10,000 cm−1 by using Thermo Fisher Omnic soft-
ware version 7.3. A background spectrum was recorded using an air
reference at 25 ◦C. Each sample section was scanned five times at
different positions, and the average of five scans was used as the
measured spectrum. The NIR spectra of the paraffin sections are
given in Fig. 4. Each spectrum was obtained from a tissue section
of a different patient.

3.3. Data treatment and computation

The aim of this work is to develop a new method for diag-
nosis of endometrial cancer as well as other cancers, therefore,
some synthetic data with various properties and characteristics
were generated for method evaluation. A set of underdetermined
and overdetermined synthetic data were constructed in MAT-
LAB. For both sets, the number of variables was 200. For the

underdetermined set, the number of objects was 100 and for the
overdetermined set the number of objects was 400. All other fol-
lowing parameters were the same for the two sets of synthetic
data. Normally distributed random deviates with a mean of zero
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Table 3
Factors and levels in the orthogonal experimental design.

Levels Factors

OSC method C g nc

1 EOSC 11 −15 5
2 PC-OSC 12 −14 20
3 No OSC 13 −13 30

Note: The second column is the OSC methods used in this work, three methods were
taken as three levels of OSC factor. EOSC: emphatic orthogonal signal correction;
Fig. 4. Average NIR reflectance spectra of the 77 tissue thin sections.

nd standard deviation of 0.1 were added to all the points of the
ata set to simulate noise. The background variation was obtained
rom a Gaussian peak with amplitude of 1, standard deviation of 10
oints, and a randomly selected position. Eighty simulated peaks
ere generated and randomly added to half of the objects in the
ata set, so that the simulated backgrounds would be independent
f the signal. A signal vector was formed using 4 Gaussian peaks
ith amplitudes of 0.3, standard deviations of 5 points, and cen-

ered at 40, 80, 120, and 160 point number. The signal was added
o 50% of the objects and these objects were designated as class A.
he other objects were designated as class B. This set represents a
ase for which a trace quantity of analyte is to be detected from a
lank matrix with complex background variations.

For illuminating the differences between OSC calibration and
rediction data sets, a Venetian blind was used to partition the data

nto two equally sized sets. The spectra in the even numbered rows
f the data matrix were used for constructing the OSC model and
he spectra in the odd numbered rows were used as the prediction

et.

Four Latin partitions were used to split the data into four
raining-prediction set pairs. The Latin partition method maintains
he same class distributions in the training and prediction sets
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ig. 5. Underdetermined synthetic data set with pure signal component in red. (For
nterpretation of the references to colour in this figure legend, the reader is referred
o the web version of the article.)
PC-OSC: principal component orthogonal signal correction; no OSC: with no OSC.
C: RBF kernel pennalty parameter; g: RBF kernel spread parameter; nc: number of
components.

while randomly selecting objects for these data sets [25,26]. Each of
the four training sets comprised 75% of the objects and the predic-
tion set comprised the other 25%. The results for the four prediction
sets were pooled so every object was used once for prediction and
three times for model-building. This approach was used for all the
SVM evaluations and measures of prediction rates. For these evalu-
ations 100 bootstraps with 4 Latin partitions were used except for
the screening study that used 25 bootstraps.

Based on our preliminary work on derivative spectra for the tis-
sue sections evaluations, the spectra were converted to their second
derivatives after multiplicative scatter correction (MSC) and OSC by
using a home built Savitzky–Golay (SG) filter. The SG filter used a
9 point window and a cubic polynomial. The MSC was applied first
to the training set and the prediction set objects were fit to the
mean of the train set. The signal correction models obtained from
the training set were used for correcting the prediction sets.

Four factors, the OSC method, RBF kernel spread parameter (g),
RBF kernel penalty parameter (C), and number of components for
the OSC model were screened. Two interactions terms, the number
of components for the OSC models and the two SVM parameters,
g with C were evaluated. Factors at various levels and the inter-
actions were arranged in an orthogonal experimental design table
according to Taguchi’s orthogonal arrays L81340 [27]. Each factor
and the interactions comprised columns of the Taguchi’s orthog-
onal array. The factors and their levels used for the experimental
design are given in Table 3. The experiment was bootstrapped 25
times to calculate the average prediction rates and to determine
their confidence intervals.

4. Results and discussion

4.1. Synthetic data evaluations

Support vector machines are powerful classifiers so that the data
sets were designed with a low-signal to noise ratio (i.e., 3) and a
very large background variation that is typical of many biological
systems. Fig. 5 is the underdetermined data set with the pure ana-
lytical signal visible along the bottom of the figure. Fig. 6 gives the
object scores on the first two principal components.

The data set was divided by rows into a training and a prediction
set by selecting the even row objects for the training set and the
odd row objects for the prediction set. The training set was used to
construct the OSC models. Fig. 7 gives a comparison of the principal
component scores for models built with 40 components. Note the
difference in the range of component scores between PC-OSC and
the EOSC corrected data. The EOSC data contains a larger amount
of signal variance.

Fig. 8 gives a comparison among the OSC objects. Again the

range is larger for the EOSC data and the EOSC has retained promi-
nent features that match up to the underlying signal peaks in both
the training and prediction sets at positions 120 and 180. When
normally distributed noise is removed from the synthetic data all
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traps to gain statistical power and control the variability of the
VM models. All non-linear optimization algorithms are suscep-
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optima that may result in different models for the same training
set.

The underdetermined synthetic data set had 100 objects and
200 variables. Fig. 9 gives the average SVM prediction rates across
the 100 bootstraps for this data set after the application of the two
signal correction methods and without signal correction as a refer-
ence. Without signal correction, the SVM predicted 81.5 ± 0.8% of
the objections correctly. For 100 bootstraps, the average prediction
rate is constant across the 30 components, which demonstrates the
power of the bootstrap Latin partition approach. PC-OSC is more
efficient at achieving its maximum prediction rate of 89.9 ± 0.6%
which is achieved with 15 components. EOSC achieves an equiv-
alent average prediction rate of 89.8 ± 0.7% with 25 components
and remains constant, while the PC-OSC average prediction rate
declines as it begins to overfit the data after 35 components. There
are 50 objects in the training set so 45 components is begin-
ning to span the full data space of the training set; remarkably
no decrease of prediction accuracy is observed with the EOSC
data.

Fig. 10 is the same experiment but this time with the overde-
termined synthetic data set of 400 objects and 200 variables.
For the overdetermined data sets both OSC methods significantly
improved the average prediction rates compared with not cor-
recting the data at all which was 91.4 ± 0.2% effective. As with
most classifiers increasing the number of objects in the training
set improves both the accuracy and the precision for the SVM. The
PC-OSC data is improved to 94.7 ± 0.2% with 9 components, while
the EOSC date yielded a 95.4 ± 0.2% average prediction rate. EOSC
allows SVM classifiers to reach a significantly better classification
method is very sensitive to overfitting with overdetermined data.
Although these differences in performance are small, they can be
detected with the high statistical power afforded by the 100 Latin
partition bootstraps.
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.2. Screening of the model parameters

ANOVA was applied to the results of an orthogonal experimental
esign to screen the main factors of the models. The results of the
NOVA are reported in Table 4. The significant factors were model
omponent number and the OSC method. The SVM kernel func-

ion parameters were not influential on the prediction accuracy.
he trends obtained by linear kernel and RBF kernel functions are
lmost the same. This finding was confirmed when the data was
valuated with an SVM using a linear kernel function and nearly
dentical prediction results were obtained as to the SVM with the
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RBF kernel function. Results show that the OSC method is the most
significant factor in the experiment.

4.3. Comparison of the two OSC methods for classifying
cancerous tissue

The RBF kernel had a C parameter of 11 and a g parameter of

−15, but the following results did not differ significantly when
a linear kernel was used (data are not shown). The OSC meth-
ods were evaluated using 100 bootstrap Latin partitions, with 4
partitions of each bootstrap from 1 to 30 components. The aver-
age prediction accuracies with 95% confidence intervals are given
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Fig. 10. Average prediction results with 95% confidence intervals for the overdeter-
mined synthetic data set obtained with two Latin partitions and 100 bootstraps.
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Fig. 11. Comparison of signal correction methods for the optimized RBF SVM clas-
sifier for the classification of the tissue thin sections. The average classification rate
with respect to OSC component number is plotted with 95% confidence intervals for
4 Latin partitions and 100 bootstraps.

Table 4
ANOVA results for the screening experiment.

Source Sum sq. d.f. Mean sq. F p-Value

OSC 0.064 2 0.032 35.239 0.0
nc 0.003 2 0.002 1.795 0.2
C 0.000 2 0.000 0.000 1
g 0.000 2 0.000 0.121 0.9
OSC × nc 0.016 4 0.004 4.302 0.002
C × g 0.000 4 0.000 0.000 1
Error 1.828 2008 0.001
Total 1.912 2024
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Fig. 13. Comparison of principal component scores for PC-OSC and EOSC of the NIR measu
of components for each model was 27 which was the optimal number with respect to the
was 1, so for this case some overfitting may have occurred.
Fig. 12. NIR reflectance spectra after MSC and mean centering to compare with the
OSC data.

in Fig. 11. Without using signal correction, good performance of
93.0 ± 0.7% was obtained. The PC-OSC had improved the prediction
accuracy with a result of 93.6 ± 0.7% that used only a single com-
ponent. EOSC gave a maximum prediction accuracy at 94.5 ± 0.6%
with 27 components. A matched sample t-test revealed that this
EOSC gave a significantly better result than without using signal
correction. The p-value was 2 × 10−9 for the matched sample t-test

so that the prediction accuracy had statistically improved over no
signal correction. A similar p-value of 3 × 10−5 was obtained for
the significance test with respect to EOSC compared to the PC-
OSC method. The confidence intervals in Fig. 11 characterize the

rements of A: normal, B: hyperplasic, and C: cancerous tissue sections. The number
EOSC SVM classifier. The optimal number of components for PC-OSC SVM classifier
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ig. 14. The OSC spectra (left panels PC-OSC) and (right panels EOSC) using 27 co
eatures after the correction.

ariation in prediction accuracy with respect to the composition
f the training and prediction data sets that vary among the boot-
traps. The large variability indicates that the number of samples
re not adequate to solve this problem, but the study was con-
trained by the number of samples that were available from the
ospital. The matched sample t-test removes this additional source
f variation for comparing the prediction results.

Two-way ANOVA of bootstrapped prediction results comparing
OSC and without signal correction also yielded a statistical dif-
erence of 1 × 10−6, while the component number and interaction
ere insignificant at a 95% confidence level.

EOSC with 27 components was compared to the PC-OSC cor-
ected data with the same number of components. The NIR spectra
re in Fig. 4. The sharp peaks from 4300 to 5800 cm−1 are wax
eaks, and the background shift was found because of the variation

n pathlength and scatter from the sample matrices and sampling
ssues such as geometry of the sample. The background shift can
e corrected by data OSC. The data used the same pretreatment as
he previous SVM evaluations in that MSC was used first to correct
he data. Fig. 12 gives the spectra after the MSC and mean-centering
teps. This preprocessing step was done so the unprocessed spectra
ould be comparable to the signal corrected spectra.

The spectra were divided systematically into training and pre-
iction sets by placing spectra in the even numbered rows of the
ata matrix into the training set and the odd numbered rows into
he prediction set (i.e., Venetian blind partition). Fig. 13 compares
he principal component object scores in a similar fashion as the
ynthetic data. The same trends are observed. The relative posi-
ions of the scores appear similar between the two OSC methods,

ut the range of the scores for EOSC is respectively 40 and 20 times
reater than PC-OSC for the training and prediction sets, respec-
ively. A similar tendency appears in the spectra given in Fig. 14. For
OSC recognizable spectral features are apparent, while for PC-OSC
lthough spectral information is still present and no distinguish-
Wavenumber (cm-1)

ents in the model. EOSC does not overfit the data and retains many of the spectra

ing spectral features are visible. EOSC spectra also have the same
increase in the range of intensities as seen with the synthetic data.
EOSC appears to be even softer than the soft method PC-OSC which
is helpful for fine-tuning background correction and preventing
overfitting of the spectra during signal correction.

5. Conclusions

NIR spectra of tissue samples often have severe background
variation because of scattering and the unavailability of suitable
reference materials. Therefore background corrections may be
required and OSC methods are effective. The EOSC method is intro-
duced for the first time in the chemical literature. Coupled with
support vector machines the EOSC method provides a statistical
improvement over the case without any background correction.
Both simulated and real studies demonstrate the inherent advan-
tages of EOSC over PC-OSC when coupled with an SVM classifier.
EOSC performed as well or better than PC-OSC although it is softer
in that it requires more components to correct the data. This lower
efficiency is an advantage because it allows the background correc-
tion to be fine-tuned. Another advantage of EOSC is its resistance
to overfitting or overcorrecting the data, especially for overdeter-
mined data sets. The most important advantage of the EOSC method
is that it preserves characteristic information so that the signal cor-
rected spectra are still amenable to interpretation. Therefore, EOSC
has promise for differential diagnosis of endometrial cancer based
on NIR detection. This technique may provide a reliable method for
correcting NIR spectra that may develop into a novel and robust
approach to the non-invasive diagnosis for tumors.
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